
MINIO
Accelerating object storage with PORTrockIT

EXECUTIVE SUMMARY

Many modern applications require a
scalable way to store and retrieve files
and other types of data that cannot
be stored efficiently in a traditional
database. For example, any application
that allows users to upload and view
images, videos or files of any type will
probably store those assets in an object
storage cluster.

Amazon S3, a cloud service, is the market
leader for object storage – but many
companies have information security or
compliance requirements that prevent
them from storing their data in the
public cloud. MinIO provides an open
source alternative: an enterprise-grade
object storage platform that provides an
S3-compatible API, but is not tied to any
particular infrastructure. Users can set
up their own clusters on-premises, or in
a local data centre.

However, running your own MinIO
cluster can pose challenges, especially
when you lack the resources of a large
company like Amazon. Transferring
files across a wide area network (WAN)
using a traditional TCP/IP connection
can be extremely slow, especially
when network latency and packet loss
degrade performance.

If users have to wait minutes or hours
for a file to upload or download, it
reduces their productivity and creates
a major barrier to adoption. And if a
company is relying on MinIO to back up
its file servers or provide access to large
datasets for analytics, a slow network
can cause long-running jobs to overrun
their allotted time-window or even
fail altogether.

This paper shows how PORTrockIT can
transform the performance of MinIO at
both storing and retrieving data across
a WAN by counteracting the effects of
latency and packet loss.

Our benchmarks show that PORTrockIT
was able to accelerate data transfer
significantly in every scenario we tested;
in several cases, its transfer rate was
more than 99 times faster than a
traditional network architecture.

“In several cases, the
transfer rate with
PORTrockIT was
more than 99 times
faster than a traditional
network architecture.”

WHY SPEED MATTERS

In a typical MinIO configuration, users
will interact with a front-end application
running on their desktop or in a web
browser. When they need to access the
object store to upload or download a
file, the application will send an HTTP
request over the WAN to the MinIO
cluster’s API. To send a file to MinIO, you
include it in the body of a PUT request,
while to retrieve a file, you send a GET

request with the file’s unique ID, and
MinIO will include the file in the body of
its response.

For technical reasons (which we will
explore in the next section), sending and
receiving these data-heavy PUT requests
and GET responses across a WAN can
be a slow process. This can be a major
issue for many reasons, depending on
the business use case. You can see some
examples in the table below.

Business use case Examples Impact of slow transfer rates

Internal business
applications

Content
management
systems,
document
archives, medical
imaging platforms

•	Reduce user productivity

•	Reduce efficiency of business
processes

•	Make it difficult to guarantee on-time
delivery to customers

•	Hinder business decision-making

Data replication
processes

Backing up file
servers or virtual
machine images

•	Cause long-running tasks to overrun
their allotted window, impacting other
systems

•	Cause tasks to time-out and fail,
leaving critical data unprotected

Analytics
processes

Training machine
learning or deep
learning models
on large data sets

•	Increase the time taken to train a
model

•	Reduce the number of iterations that
can be performed

•	Impact the quality and accuracy of
models

•	Restrict the flow of insight to the
business

MinIO includes built-in data compression
and parallelisation features that attempt
to mitigate the risk of slow transfer rates.
However, these capabilities have their
limitations:

•	Additional compression does not
benefit modern video and image file
formats, which already utilise extremely
advanced compression algorithms.

•	Parallel threads help MinIO take greater
advantage of available bandwidth, but
TCP/IP limitations still limit performance
on a network where latency and packet
loss are high.

Although MinIO’s compression and
parallelisation capabilities may mitigate
the symptoms of an unreliable WAN to
some extent, they do not address the
root causes of slow transfer rates. To
understand why, we need to take a deep
dive into how WAN data transfers work.

THE PROBLEMS: L ATENCY
AND PACKET LOSS

The chief culprit for poor WAN replication
performance is latency – the time delay
between a source system sending a
packet across the network, and the
target system receiving that packet.

The main cause of latency is the physical
distance that the packet has to travel.
Even with high-speed fibre-optic cabling,
latency can increase at a rate of up to
5 microseconds per kilometre travelled.

The need to receive, queue and process
packets at either end of the connection
and at any intermediate gateways also
adds significantly to the round-trip time.
In short, the further the data has to
travel and the more gateways it has to
pass through, the greater the latency.

For network traffic sent via the TCP/IP
protocol (and almost all HTTP traffic
falls into this category), high latency can
cripple transfer rates.

TCP/IP works by sending a group
of packets, then waiting for an
acknowledgement that the packets have
been received before it sends the next
group. If the latency of the connection
is high, then the sender spends most of
its time waiting for acknowledgements,
rather than actually sending data. During
these periods, the network is effectively
idle, with no new data being transferred.

When packet loss occurs, the situation
gets even worse. If a packet is lost before
it is received by the recipient, or the
acknowledgement goes astray before it
reaches the sender, TCP/IP automatically
reduces the number of packets it sends
in the next group to compensate for
the unreliability of the connection. As
a result, network utilisation falls even
further, because the sender is sending
fewer packets in the same amount
of time.

Companies often try to solve TCP/IP
performance issues by investing in more
expensive network infrastructure that
offers a larger maximum bandwidth.
However, this does not fix the problem.
As we have seen, latency and packet loss
prevent TCP/IP connections from fully
utilising the available bandwidth – so any
investment in additional bandwidth will
simply be wasted unless the latency and
packet-loss issues can be addressed.

THE SOLUTION:
PORTROCKIT

PORTrockIT offers a solution to WAN
transfer performance issues. Instead of
sending a group of packets down a single
physical connection and waiting for a
response, the solution creates a number
of parallel virtual connections that send
a constant stream of data across the
connection.

As soon as a virtual connection has sent
its packets and starts waiting for an
acknowledgement from the recipient,
PORTrockIT immediately opens another

virtual connection and sends the next
set of packets. Further connections
are opened until the first connection
receives its acknowledgement; this first
connection is then re-used to send
another set of packets, and the whole
process repeats.

This parallelisation practically eliminates
the effects of latency by ensuring that
the physical connection is constantly
transferring new packets from the
sender to the recipient: there is no
longer any idle time, and the network’s
bandwidth can be fully utilised.

The solution also significantly reduces
the impact of packet loss. If one of the
PORTrockIT virtual connections loses
a packet, TCP/IP will only reduce the
number of packets in the next group
sent by that specific connection. All the
other connections continue to operate at
full speed.

PORTrockIT is also capable of optimising
the flow of data across the WAN in real
time, even if network conditions change.
The solution incorporates artificial
intelligence engines that continuously
manage, control and configure
the connection settings – enabling
the appliance to operate optimally
at all times, without input from a
network administrator.

PORTrockIT is installed as a pair of
appliances (or virtual instances),
deployed at either end of the WAN.

“Investment in
additional bandwidth
will be wasted unless
latency and packet-loss
issues can be addressed.”

When a user’s application sends a GET
or PUT request to MinIO, it is routed to
the PORTrockIT appliance on the near
side of the WAN – for example, in the
server room of the office where the user
is working.

PORTrockIT then passes the request
through a set of virtual connections to a
second PORTrockIT appliance on the far
side of the WAN, where the MinIO cluster
lives. Once the second PORTrockIT
appliance begins receiving packets, it
routes them seamlessly to MinIO, and
returns the response via the same route.

The result is an instant and dramatic
boost to network transfer performance,
simply by plugging the two appliances
into the existing network. There is no
need to make any changes to the rest
of the network architecture, or to invest
in additional servers, gateways, or
network fibre.

TURNING THEORY INTO
PRACTICE

To demonstrate the results that
PORTrockIT can deliver for MinIO
environments, Bridgeworks conducted
a set of performance tests at an
independent testing facility in the UK.
The test infrastructures mimicked a
real-world WAN architecture, using a
WANulator to simulate different levels
of latency and packet loss between the
MinIO client application and the MinIO
server.

The first set of tests were performed on
an unaccelerated architecture, where
the client and the server were both
connected directly to the WANulator
(see Figure 1).

TEST EQUIPMENT

SOFTWARE:

•	 MinIO server (RELEASE.2019-03-
06T22-47-10Z)

•	 MinIO client (RELEASE.2019-03-
09T00-30-31Z)

HARDWARE:

•	 2 x Dell PowerEdge R710 servers
• 2 x Intel Xeon E5645 processors
• 25 GB RAM
• Ubuntu 16.04.6

•	 2 x PORTrockIT 200 series nodes

•	 1 x WANulator

“PORTrockIT provides an
instant and dramatic
boost to network
transfer performance,
with no need to make
any changes to the rest
of the network.”

Figure 2: Accelerated environment setup

Figure 1: Unaccelerated environment setup

WANulator
MinIO client MinIO server

PORTrockIT PORTrockITWANulator
MinIO client MinIO server

The same tests were then repeated
on an architecture that added two
PORTrockIT appliances on either side
of the WANulator, and routed all traffic
from the client and the server through
these appliances.

Bridgeworks tested the performance
of MinIO for both GET and PUT requests.
All of the tests on the PORTrockIT
accelerated architecture (see Figure 2)
used a pre-compressed 5 GB file to
assess the average transfer speed.

For the tests on the unaccelerated
architecture, it was necessary to switch
to smaller files at higher levels of
latency and packet loss – otherwise the
tests would have taken many hours to
complete. In subsequent sections of this
paper, these results have been scaled
proportionally to indicate how long
the architecture would have taken to
transmit a 5 GB file. This makes it easier
for readers to compare the performance
of the two architectures.

WHAT THE DATA TELLS US

L ATENCY

The first test simulated a scenario with
no packet loss, at latencies ranging from
0 ms to 360 ms round trip time (RTT).
A 5 GB test file was transferred across
the WAN via both GET and PUT requests,
first via the unaccelerated architecture,
and then again via the accelerated
architecture with PORTrockIT.

Looking at Figures 3 and 4, the
results show that performance on the
unaccelerated architecture degraded
as latency increased.

GET requests were affected significantly
more than PUT requests: in the scenario
with 360 ms of latency, the transfer
speed for a GET request was just
8.13 MB/s, while the PUT request fared
better at 29.60 MB/s.

The accelerated architecture performed
similarly at low levels of latency, but
showed almost no degradation in
performance as latency increased. Even
at 360 ms of latency, the transfer rate
for 82.58 MB/s for PUTs (64% faster than
the unaccelerated architecture), and
77.58MB/s for GETs (89% faster than the
unaccelerated architecture).

0 50 100 150 200 250 300 350
0

50

100

150

0

50

100

150

Latency / Round Trip Time (ms)

Tr
an

sf
er

 R
at

e
(M

B
/s

)

Accelerated

Unaccelerated

Figure 3: Chart of latency at 0% packet loss for MinIO GETs

PACKET LOSS

Next, the team decided to investigate
the impact of introducing packet loss at
different levels of latency. Two scenarios
were considered: a network with
0.1% packet loss, and a network with
0.5% packet loss.

Figures 5, 6, 7 and 8 all show that the
unaccelerated architecture saw severe
performance degradation for both GET
and PUT requests from the combination
of latency and packet loss. In both
scenarios, the accelerated architecture
performed considerably better on both
GETs and PUTs.

Even in the most challenging scenario
(360 ms of latency with 0.5% packet loss)
the accelerated architecture achieved
a transfer rate of 38.21 MB/s for GET
requests – more than 99 times faster
than the unaccelerated transfer rate
of 0.37 MB/s. In the same scenario,
PUT requests ran at 27.98 MB/s on the
accelerated architecture, compared to
just 1.23 MB/s on the unaccelerated
architecture – more than 95 times faster.

0 50 100 150 200 250 300 350
0

50

100

150

0

50

100

150

Latency / Round Trip Time (ms)

Tr
an

sf
er

 R
at

e
(M

B
/s

)

Accelerated

Unaccelerated

Figure 4: Chart of latency at 0% packet loss for MinIO PUTs

0 50 100 150 200 250 300 350
0

50

100

150

0

50

100

150

Latency / Round Trip Time (ms)

Tr
an

sf
er

 R
at

e
(M

B
/s

)

Accelerated

Unaccelerated

0 50 100 150 200 250 300 350
0

50

100

150

0

50

100

150

Latency / Round Trip Time (ms)

Tr
an

sf
er

 R
at

e
(M

B
/s

)

Accelerated

Unaccelerated

Figure 5: Chart of latency at 0.1% packet loss for MinIO GETs

Figure 6: Chart of latency at 0.1% packet loss for MinIO PUTs

0 50 100 150 200 250 300 350
0

50

100

150

0

50

100

150

Latency / Round Trip Time (ms)

Tr
an

sf
er

 R
at

e
(M

B
/s

)

Accelerated

Unaccelerated

0 50 100 150 200 250 300 350
0

50

100

150

0

50

100

150

Latency / Round Trip Time (ms)

Tr
an

sf
er

 R
at

e
(M

B
/s

)

Accelerated

Unaccelerated

Figure 7: Chart of latency at 0.5% packet loss for MinIO GETs

Figure 8: Chart of latency at 0.5% packet loss for MinIO PUTs

REALISING THE BUSINESS BENEFITS

MinIO is potentially an ideal solution for
companies that need to host and control
their own object store.

However, in the common case where
a company has one or more office
locations that need to connect to a
MinIO cluster at a remote data centre,
it’s vital to ensure that network latency
and packet loss will not degrade
performance.

By adding PORTrockIT to their MinIO
network architecture, companies can
resolve these issues instantly.

PORTrockIT offers plug-in-and-go
technology that can be implemented
quickly with minimal impact on the
rest of the IT infrastructure – keeping
deployment costs and risk to a minimum.

Furthermore, by maximising the
performance of existing infrastructure,
PORTrockIT reduces the need to invest in
expensive high-bandwidth connections
or more powerful servers – enabling
significant cost-avoidance.

Depending on the company’s use case
for MinIO, the introduction of PORTrockIT
can also deliver significant higher-level
business benefits, as shown in the table
below.

Business use case Results of PORTrockIT acceleration

Internal business
applications

•	Increase responsiveness, boosting user productivity

•	Accelerate business processes, increasing efficiency

•	Give decision-makers instant access to the data they need

Data replication
processes

•	Ensure that tasks run reliably and finish on time

•	Eliminate the risk of impacting other business systems

•	Keep business data fully protected at all times

Analytics
processes

•	Accelerate training cycles for machine learning models

•	Enable faster iterations, creating higher-quality models

•	Deliver accurate insight to the business more quickly

ABOUT THE AUTHOR

George Trossell is a Systems Engineer
at Bridgeworks, specialising in technical
presales and solution architecture.

Over the course of his career, George
has gained expertise across a broad
spectrum of engineering and commercial
disciplines – from developing and testing
applications and tools to providing sales
and technical support. In particular,
George is passionate about monitoring
and measuring the performance of
systems and software, making him the
ideal person to lead Bridgeworks’ testing
and benchmarking initiatives.

George has a Master’s degree in
electrical, electronic and communications
engineering from the University of Kent,
and is a Member of the Institution of
Engineering and Technology.

TAKE THE NEXT STEPS

To learn more about PORTrockIT and
other smart networking solutions
from Bridgeworks, please visit
www.4bridgeworks.com, or call us on
+44 (0) 1590 615 444.

http://www.4bridgeworks.com

Copyright Bridgeworks 2019 / www.4bridgeworks.com / +44 (0) 1590 615 444

http://www.4bridgeworks.com

